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existence of an V(r+p)  by (r+p) nonsingular submatrix of P . Assuming

for simplicity that the first r + p columns of P are linearly independent ,

we can partition P as P = 
~D
’
~~I~ 

‘ 
where P

1 
is an (r+p) by [n—(r+p)]

matrix. This induces a natural decomposition of the variable x = (x~,4)
T

and since g(x ,O) = 0 and h(x ,O) = 0 , allows application of the
implicit function theorem to conclude that there exists a twice differentiable

vector function x~(x
1
) such that g[x~ (x

1
), x

1,
O] E 0 and h [x~ (x

1
) , x

1
,O] E 0

* * * *near x1 
= x1 , and (x

D
(x
I
) ,x

I) 
= ~c . The and x1 may be thought of

as “dependent” and “independent” variables, respectf ully, hence, the choice
of indices. Once the binding constraints are identified, it suffices to
minimize f [x.~(x1), 0] over x1 using any appropriate unconstrained method,

* *to determine x1 , and hence x . The indicated algorithms actually invoke

the linear independence assumption S for all feasible boundary points , and
hence at any given iteration can either reduce f(x) without encountering
constraints, or will be In a situation completely analogous to the one
described at the outset , and can proceed to minimize f over the currently

independent variables in the space of currently binding constraints.

Returning to the determination of S and P# for this type of
algorithm, we observe that S (S~,S~)

T must satisf y

= 
D,
P
I~~~~~~~~

T 
= 0 , 80 S

D 
P; P1

S1 and hence

s
~ t u

s1 .

Similarly, since PP~P — P , def ining p# ((p )
T (p)T)

T gives the

result-

~~
#

u u u( p ) f; ] +  f I ] P 2
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In terms of the quantities defined, the block components A ..
—1 13

of N are therefore given by (5.10), where

,, 1~-l1
S = T S  , p = 1  1+ T P

I [
~~

j  2

and T = 
L 

.~ J , an n by [n—(r+p)] matrix with rank [n—(r+p)) ,

S1 is any [n— (r+p) ]  square nonsingular matrix, and P2 is any [n— (r+p)]

by (r+p) matrix.

For the projected gradient type algorithms, the gradients of
binding constraints are again assumed linearly independent at feasible
boundary points , with the data being organized mainly to accommodate a

projection matrix of the farm, P~ = I — pT(ppT) 1p , used to project a

given direction vector into the linear subspace associated with the cur-

rently binding constraints. Here , the rows of P would represent the

gradients of the constraints current ly deemed to remain binding in the

next- iteration, and ~~~ is an (r+p) by (r+p) matrix , nonsingular under

t~e linear independence assumption. We find that P1 
= pT(ppT)

_l 
satis-

fies the requirements for a pseudo—inverse of P , and it follows easily

that a suitable choice for S is any matrix SR formed by selecting any

[n—(r+p) ] linearly independent columns of . The block components of

for gradient proj ection type calculations are therefore the same

as (5.10) , with S = SR and p# pT (ppT)
_l

Therefore, returning to the calculation of the derivatives of the

Kuhn—Tucker triple we evaluate (5.6) for the representation (5.7) of

and the expression (5.4) of ~ to obtain

— 21 —

___________________ 

~~~~~~~~~~~~~~~ - -
S. -~ 

,,~
- 

‘.M~~ .- ~~



T—377

V 

~(V LT)
p 

—A11 ~~ + A12 
~~V x(c) — i-—

V ~ (c) = M(c)~~ i~(c) = — , (5.11)

a(V LT)

- V w(c) 
—A21 ~ 

+ A22 
— j

the ~~~ being given by (5.8) , (5.9) or (5.10), depending on the respective

conditions that apply and depending on how the data are organized.

The Hessian V2f*(c) (4.5) of the optimal value function may also

be readily calculated once (5.11) has been evaluated. To do this efficiently,

first note that we may rewrite (4.5) as

V f *(E) — a2L/a~
2 + [(a(V LT)/ac) T , _ (ag/ ac) T (ah/ac) T] V y(c) . (5.12)

Denoting by V~f* the “reduced Hessian” that results from eliminating terms V

associated with nonbinding constraints, and using the previous notation, we
obtain the concise expression,

2 * ( )  32L/ a 2 
— ~

T
V

_
( )  , (5.13)

or equivalently,

— a2Jjac2 — ~Tj~ —l ~ (5.14)

The Hessian can now be calculated from the given problem data and (5.13)
or (5.14) , using (5.11), evaluating the A1~ as given in (5.8), (5.9) or

(5.10), dsp.nding on which conditions apply.

b r  Problem 1(t), (5.11) simplifies considerably, as shown by
Arascost and Fiacco [5]. It is easy to verify that for this problem,

¶

- 
- 

-
~~~~~~~~ ~~- - V
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3(V LT)/ ac . 0 , ~g1~ c = [—1 ,0] and ah/ac — [0 ,— I ]  . Therefore, (5.11)

becomes
- - r r-r 0

V x(€)  1
A12 LV ~(c) = — 

— 
0 I 

(5.15)
C ::;~~~

1 

* 

L22 
[
~ ~3

The general formulas for V f (c) also simplify for Problem R(c)

Observe that for this problem, V2L/~ c2 
— 0 and N = 

[o ,[ 
I 

0]] 

T 

Hence,

using the form (5.13) we obtain

V21*çc) = - 
[o 

, [
~ 

~

]]{

~1~~

] 

=

which essentially agrees with the result obtained in Corollary 4.1, and

using the form (5.14) we obtain the interesting result ,

—
* 1-’ 01 1-I 01

— A 
2 • (5.16)

Lo i~ 
2 [ o  rJ

Aside from the considerable computational simplifi cation compared
to the general problem, these results provide additional insights into the

structure of the solution, since we have explicit relationships for the

various parameter—derivatives in forms of quantities associated with the

original problem functions. For example, noting the result (5.16) and

the various possibilities for A22 given in (5.8), (5.9) or (5.10), we

can see directly that f*(c) (associated with R( c ))  is convex in a
neighborhood of c — 0 if the Lagrangian L(y,c) of R(c) is convex

in x • This well known fact and several related and less well known

-23 - V
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inferences associated with Problem R(c) can be shown explicitly using the

given formulas. For additional details and results, see the paper by

Armacost and Fiacco [51.

6. Discussion of Results and Extensions

The nontrivial computational considerations associated with checking

whether all the conditions are satisfied, as required by the assumptions

of Theorem 3.1 and further compounded by the refinements associated with

the appropriate calculation of the A
u 

, are typical of analogous verif i—

cation problems confronted by most numerical procedures. Additional diff i—

culties are , of course, associated with the (typical) requirement to essen-
tially know the solution before the conditions required to solve the problem

can be verified or the solution analyzed. Such concerns are outside the

scope of the presentation, that is primarily concerned with the existence
and characterization of relationships that hold at a solution. However, a

few relevant comments can be offered.

As stated briefly at the outset, a method for estimating solution

sensitivity information by using penalty function methods was established
by Fiacco [l5], implemented on the computer by Armacost and Mylander [8]
and extended aud applied by Armacost and Fiacco [3] — [6]. This
approach is based on the fact that the local solution matrix of first par—

tial derivatives VCx(e) , the optimal value f*(c) and the gradient
* 2 *

5
f (c) and Hessian V f  (c) of the optimal value function, are component

by component limits of the parameter—derivatives of the penalty function

minimizing point, optimal penalty function (parameter) gradient and Hessian,

respectively, under the given conditions. In effect, a class of algorithms
was shown to generate a trajectory that both terminates at a solution and

rather faithf ully reflects the per turbation behavior (subject to parameter

• changes) of the solution, as the solution is approached. Furthermore, the

calculations required to determine the sensitivity information turn out to

be of the same form as the calculations required by the algorithm to gen—

crate a solution trajectory. Thus, for such algorithms applied to problems

—24 —
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satisfying the appropriate conditions , increasingly accurate estimates of

the sensitivity information is available with little extra effort, as the
solution is approached, i.e., the solution need not be known in advance
of easily determining certain aspects of its behavior. (Another example

of this sort of result is the calculation of error bounds in solving sys-

tems of equations. For an application to nonlinear programming, see the

paper by Robinson [22].)

A second theoretical advantage of the penalty function approach to

estimating solution sensitivity involves the calculation of the ~~ defining

(5.7) and is worth noting. Under the assumed conditions, the Hessian

of the penalty function is positive definite near a solution. (See Fiacco

and McCormick [16, Theorem 12) and Fiacco [15]). The stationarity condition

• of the penalty function at the minimizing point essentially approximates

(with appropriate interpretation) the information given in (3.1) , and the

• result is a single formula (obtained by Fiacco (15]) for the approximation

of V y(c) . Thus, there are no alternative calculations such as (5.8) , (5.9),

or (5.10) that depend on the status of the solution. (Armacost and Fiacco (4]
provide a detailed treatment of the penalty function estimates.)

The latter advantage has been shown to extend to augmented Lagrangian

functions by Armacost and Fiacco f 7],  Armacost [2] , and Buys and Gonin [13].
Indeed , it is clear that unique formalas for V

~
y( E)  will obtain for that

family of generalized Lagrangians and exact penalty functions that are struc-

tured such that their Hessians are positive definite at a Kuhn—Tucker triple

under the conditions of Theorem 3.1. A large class of such Lagrangians was

developed by Arrow , Gould and Howe [9]. Essentially, if the extended

Lagrangian is denoted by 4’ then, since the role of 4’ is precisely analogous

to the role of the usual Lagrangian L , and since V
~4’ 

0 and V~4’ is

positive definite at a Kuhn—Tucker triple, it follows that 4’ can replace

L in the results given. In particular, it follows that the ~~ that

determines M~ are uniquely given by (5.8), with 4’ replacing L in

those formulas.

— 25 —
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It is also clear that, if the Lagrange multipliers (of such an

extended Lagrangian) are sufficiently smooth functions of the problem

parameters that converge to (locally) optimal multipliers, then the
associated minimizing point of the Lagrangian function, along with the

parameter—derivatives of the minimizing point, will converge respectively

to x(e) and V
~
x(c) , and the optimal *alue, gradient and Hessian of

* * 2*the Lagrangian will converge to f (c) , V
~

f (c) and V
~

f (c) , respec-

tively. Thus, these functions also give rise to techniques for estimating

sensitivity information prior to the determination of a solution, analogous
to those obtained for penalty functions. An extension of the class of

algorithms that can be so utilized should continue to be an interesting

subject of future research.

In the other direction, that of using solution sensitivity information

to characterize algorithmic behavior, interesting examples are the proof
by Meyer (21] of convergence of a family of algorithms and the determination

by Robinson (-22~i of the convergence and rate of convergence of a large
class of algorithms.

Finally, though we have concentrated on sensitivity analysis and
developed neighborhood results, some of these results may be expected to 

V

extend to parametric nonlinear programming, where the parameters are per-

mitted to range in a prescribed set. A characterization and sensitivity

and stability analysis of parameter—dependent solutions will undoubtedly
be a subject of sustained future investigation. It seems apparent that

results “in the large” will depend critically on neighborhood results such
as those presented here.

An immediate application of the sensitivity analysis results

obtained here is a calculation of first order estimates of a Kuhn—Tucker
tripl, of a problem with parameter changes, and first and second order
estimates of the optimal value function, using Taylor ’s series expansions.
If x(O) is a solution of Problem P(O) satisfying the conditions of
Theorem 3.1, then a first order estimate V

of th. optimal value function,

— 2 6 —

— 
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f
*

(C) f(x(c),~ ] , for c in a neighborhood of 0 , is given by

* * *f (c) f (0) + y E  (0)~ , (6.1)

and a second order estimate is given by

* * * 1 T 2  *f (c) = f (0) + V f  (0)c + C V f (O)c (6.2)

* * * 2 *where f (0) = f(x ,0) and 
~ C

1 (c) and V f  (c) are defined by (4.4) and (4.5),

respectively. A first order estimate of the Kuhn—Tucker triple y(c) is

given by

y(C ) = y(O) + V
~

y(O)c

x~1 
-

= u~~ + M~~(0)N(0)c , (6.3)

*1vi

where we have used Conclusion (1) of Theorem 3.1 and Equation (3.3).

An ever important general application of sensitivity analysis is the

determination of those parameters to which a solution is the most sensitive.

In the context of mathematical programming, if the optimal value or one or

more components of a solution vector or any of the constraints can change 
V

erratically for small changes in a parameter, there is little comfort in

having a particular solution at hand for the given data, if the data is (as

usual) subject to errors or alterations that can exceed these “small changes.”

A sensitivity analysis can thus lead to the more likely sources of instability

in the model and to a further study of data inaccuracy (e.g., suggesting

more observations to reduce the variance of sample estimates, as in a chance

constrained formulation of a problem studied by Armacost and Fiacco [3]). It

can also suggest reformulating the model to eliminate various instabilities

(e.g., by refraining from expressing an equality constraint as two inequal-

ities, the consequences of which are easily seen to make singular the Jacobian

M of the Kuhn—Tucker system (3.1) , the computational implications being

dramatically conveyed by Robinson [23]) or introducing “regularizations,”

— 27 —
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i.e., estimates or perturbations that introduce stabilities (e.g.,
replacing nondifferentiable functions by differentiable approximations

or perturbing a function so that the Hessian of the perturbed function is
nonsingu.Lar in an appropriate domain , as in the various definitions of
augmented Lagragians).

The sensitivity information for the optimal value function and the

Kuhn—Tucker triple can also be used to drive various “cyclic” procedures

for solving problems involving optimization, e.g., in solving

~~~ 
sexy F(x,y) by cycling between descent moves in x—space and ascent

moves in y—space, where the parameter c of P(c) would essentially momen-

tarily correspond to that subset of variables that are considered to be

“independent” for a given iteration. An excellent discussion of this sort

of method may be found in a paper by Hogan (17] and a recent application

using penalty function approximations mentioned earlier and validated in (15]

was given by de Silva [14]. The latter involves the solution of an implicitly

defined optimization model of U.S. crude oil production.

For Problem R(e) , where the parameters are the right—hand side of

the constraints, the Kuhn—Tucke r triple derivatives (5.15) and the Hessian

of the optimal value function (5.16) are relatively easy calculations and

should have powerful application in solving large—scale problems by intro—

ducing Newton—type techniques in the various established decomposition pro-

cedures. Problems of this type are also intimately involved in much of

duality theo ry and sensitivity information may have useful application in

defining and accelerating algorithms for solving R(0) by various dual

metho ds . Sensitivity results for Problem R( c) are treated in considerable

detail by Armacost and Fiacco [5]. Potential applications are abundant.

We have presented a number of basic results for a locally rather

ideally behaved class of nonlinear programming problems . Resul ts involving
the general behavior of the opt imal value function and a given solution or
solution set, under less stringent assumptions, have been known for some

time, and numerous significant refinements , extensions , - and generalizations
have been obtained only recently. The subject of sensitivity and stability

— 28 —
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analysis in nonlinear programming is finally receiving the attention it

deserves. The reader interested in pursuing the subject further may make an

excellent start by studying the articles [17], [18},and [19] by Hogan and

consulting the numerous references therein.

j 
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